CHAPTER ONE
1.0 INTRODUCTION
1.1 Background
Groundnuts (Arachis hypogaea L) also known as peanuts, is a
leguminous crop, a member of the genus Arachis in the family Leguminosae. It is
widely grown in the tropics and subtropics due to its nutritional and economic
importance. Groundnut is the most widely grown major legume worldwide
cultivated in 118 countries and occupies more than 22.6 million ha that produce
about 36.4 million MT, with average yield of about 1600 kg ha-1(Abate et al.,
2012).
Groundnut seeds (kernels) contain 40 -50 % fat, 20 – 50 %
protein and 10 – 20 % carbohydrates (ICRISAT, 2003). Groundnut seeds are
nutritional source of vitamin E, niacin, calcium, phosphorus, magnesium, zinc,
iron, ribloflavin, thiamine and potassium (Kumar and Shankar, 2013). In most of
the developing countries it provides high-quality cooking oil and is an
important source of protein for both human and animal diet and also provides
much needed foreign exchange by exporting the kernels and cake. The uses of
groundnut plant therefore, make it an excellent cash crop for domestic markets
as well as for foreign trade in several developing and developed countries
(FAO, 2002).
In Africa, groundnut is grown mainly in Nigeria, Sudan,
Senegal, Chad, Ghana, Congo, and Niger. Average productivity is 1720 kg ha-1 in
Nigeria which is poor when compared to the USA and other developed countries
where it is close to 3500 kg ha -1 (Vara-Prasad et al., 2009). The crop is
grown mostly by smallholder farmers under rainfed conditions with limited
inputs (Samson, 2012). Majority of the soils of the Guinea savanna of Nigeria
are inherently low in fertility especially organic matter, phosphorus and
nitrogen (Odunze and Kureh, 2009; Oluwasemire and Alabi, 2004). To address this
challenge, farmers in the northern Guinea savanna use strategies such as
application of organic and inorganic fertilizers (Samson, 2012). The use of
inorganic fertilizers is effective but costly (Obisesan et al., 2013); this
therefore, leads to application at sub- optimal level that is, below the
recommended rate (Olawale et al., 2009). On the other hand, organic
fertilizers, such as crop residues and animal manures are bulky. They contain
relatively low concentration of nutrients and handling them is laborious.
ICRISAT (1995) recommended an application of 10 -12 t ha-1of chicken manure or
20 t ha-1 of well decomposed farm yard- manure for groundnut production. Wamba
et al. (2012) gave the nutrient content of poultry manure as 21.76 N g kg-1,
8.74 P g kg-1 and 11.22 K g kg-1. This however depends on the handling
conditions. Much of the N in manure may be lost to the air if they are allowed
to dry out or stored for a long time. Unlike cereals, legumes are able to
supplement their nitrogen (N) demand and contribute to soil N through various
processes. Legumes fix atmospheric nitrogen (N2) in the soil through its
symbiotic relationship with N- fixing bacteria. Legumes also add nitrogen to
the soil through falling leaf litter and, to a lesser extent by decaying roots
and root nodules below- ground, and thus they have great potential for
restoring degraded soils. The organic matter produced by legumes is generally
rich in nitrogen and of good quality, meaning that it decomposes quickly and is
a good source of nitrogen for other plants (Giller, 2010). The ability of
legumes to fix N2 allows farmers to grow them with minimal inputs of N
fertilizer (Lupwayi et al., 2011). Therefore, farmers usually intercrop
non-legumes with leguminous crops including groundnut having considered legumes
to stabilize crop yields and also serves as a source of income and protein for
their families. In the northern savanna of Nigeria, the bulk of groundnut is
produced by small scale farmers using traditional system of mixed
cropping with maize, millet and sorghum. (Samson, 2012).
Nitrogen is considered as the most limiting plant nutrient
for crop production in West Africa (Sangakkara et al., 2003). Despite its
abundance in the atmosphere, plants are unable to use it directly because it
is present in an inert form (N2) and the nitrogen in the soil is lost through
microbial dinitrification, soil erosion, leaching, chemical volatilization,
removal of nitrogen containing crop residues from the field. As earlier
mentioned, groundnuts like other legumes play a primary role of fixing
atmospheric N through their symbiotic relationship with Rhizobium spp., usually
associated with the host’s root system. This contributes nitrogenous compounds
to the soil, either directly, by nodule excretion, or indirectly, by
decomposition of root nodules and tissues (Giller, 2003). Biological Nitrogen
Fixation (BNF) is an inexpensive, renewable resource option for smallholder
farmers, permitting them to redirect limited farm investment toward other
pressing household needs. One of the ways to increase biological nitrogen
fixation is by inoculating legume seeds with rhizobium inoculants. Research has
also shown that legumes grow best if there is some mineral N available as
nodules form and a small amount of starter nitrogen (10 to 30 kg ha-1) at
planting may increase total BNF over the crop‟s lifetime (Woomer, 2010). This
starter dose of nitrogen is necessary due to the lag period between rhizobium
colonization and the onset
of nodule functioning. The starter dose however, increases
yield only on soils that are extremely deficient in nitrogen and where crop
yield potential is high ( Kucey, 1989;Woomer, 2010).