EFFECT OF LONG TERM ROTATION, NITROGEN FERTILIZER AND TILLAGE ON SOIL QUALITY AND MAIZE YIELD IN THE NORTHERN GUINEA SAVANNA OF NIGERIA


EFFECT OF LONG TERM ROTATION, NITROGEN FERTILIZER AND TILLAGE ON SOIL QUALITY AND MAIZE YIELD IN THE NORTHERN GUINEA SAVANNA OF NIGERIA

Type: Project Materials | Format: Ms Word | Attribute: Documentation Only | Pages: 60 Pages | Chapters: 1-5 chapters | Price: ₦ 3,000.00

1,567 marked this research material reliable.
Call or whatsapp: +2347063298784 or email: info@allprojectmaterials.com
EFFECT OF LONG TERM ROTATION, NITROGEN FERTILIZER AND TILLAGE ON SOIL QUALITY AND MAIZE YIELD IN THE NORTHERN GUINEA SAVANNA OF NIGERIA

CHAPTER ONE

 

Introduction

 

Long-term field experiments are expected to provide important information regarding soil properties as affected by cropping system and soil management practices. Legumes such as cowpea and soybean add both organic matter and nitrogen (N) to the soil (Omay et al., 1997; Sainju et al., 2003) and increase soil fertility. Maize is the second most essential cereal crop after sorghum in sub-Saharan Africa; it is grown much more intensively than it was estimated since 1985 (FAO, 1999). In Nigeria, maize yield averages about 1.4 tons per hectare and this is only about 20% of the average in Canada and other parts of the world where intensive cereal production is carried out (Afolami and Fawole, 1991; FAO, 1999). Studies have shown that legume-cereal rotation produce relatively higher grain yields than either crop grown alone (Rao and Mathuva, 2000; Olufemi et al., 2001; Mpairwe et al., 2002; Dapaah et al., 2003). Rotating maize with grain legumes is often targeted towards utilizing biologically fixed-nitrogen by legumes for the benefit of the maize (Yusuf et al., 2009). Nitrogen fertilizers are most effectively used as part of a balanced fertilization plan that aims to maximize economic return of a cereal–legume rotation system; Nitrogen fertilizer, apart from increasing the content of nitrate in soil that leads to its leaching (Porter et al., 1996), results in changes in soil pH and many other soil properties (Brady and Weil, 2002). Long-term field experiments with N fertilization can give valuable information about how those changes occur and indicate the trends of the changes (Dragan et al., 2010).

 

Nitrogen (N) is most often the yield limiting nutrient with respect to crop production (Factsheet, 2014). Nitrogen contributes firstly to grain yield and forage biomass production, and at the same time to protein (Eche, 2011). Nitrogen is essential for seed formation and maturity. A steady supply is needed during the early growth stage and this steady supply can be provided by the action of soil microorganisms on the soil organic matter (SOM) or by application of inorganic fertilizers (Eche, 2011). Nitrogen stress

 

was observed to cause reduction in the number of grains per ear (Lemcoff and Loomis, 1994). However, nitrogen fertilizers can be permanently lost through ammonia volatilization, denitrification, leaching and run-off if not well managed. It could also result in changes in soil pH which affects the availability of other plant nutrients. Nitrogen can be fixed in the soil through symbiotic association of some microorganism (e.g rhizobia) and leguminous plants (Brady and Weil, 2002). Therefore proper management of soil in terms of method of tillage practice and cropping system is very important in determining the amount of N in the soil (Veenstra et al., 2006).

 

Tillage is any physical, chemical or biological soil manipulation to optimize conditions for germination, seedling establishment and crop growth. Tillage practice is very important in relation to cereal – legume rotation; it could be divided into conventional, reduced and zero tillage. Conventional tillage refers to tillage operations considered standard for a specific location and crop; it tends to bury the crop residue, usually considered as a base for determining the cost effectiveness of erosion control practices (Jasper, 2005). Reduced tillage involves no ridging and less weeding compared to the conventional tillage; it also refers to any method of soil cultivation that leaves the previous year’s crop residue on fields before and after planting the next crop to reduce soil erosion and runoff (MDA, 2014). Conventional tillage produces a reduction of organic matter content due to enhanced mineralization of crop residues, disruption of soil aggregates and increasing aeration (Sainju et al., 2006). Conservation (reduced or zero) tillage increases soil organic carbon in the surface layer (Six et al., 1998; Sainju et al., 2006; Melero et al., 2009; Lo´pez-Bellido et al., 2010), improves soil aggregation (Coulombe et al., 1996), and preserves soil resources better than conventional tillage practices (Six et al., 1998). Conventional tillage helps in loosening and aerating the top layer of the soil, in destroying weed mechanically and in mixing crop residue, organic matter (humus), and nutrients evenly into the soil (Ray, 2013). One goal of soil quality research is to learn how to manage soil in a way that improves soil function; therefore

 

soil tillage is among the important practices affecting soil quality and crop yield. It contributes up to 20% of all crop production factors (Khurshid et al., 2006).

 

Soil quality is defined as the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans (NRCS, 2014). Soil contains living organisms that provide the basic necessities of life. Healthy soil gives clean air and water, bountiful crops and forests, productive grazing lands, diverse wildlife, and beautiful landscapes. Soil does all these by performing five essential functions: regulating water, sustaining plant and animal life, filtering and buffering potential pollutants and cycling nutrients. Soils respond differently to management depending on the inherent properties of the soil and the surrounding landscape. Understanding soil health means assessing and managing soil so that it functions optimally and is not degraded for future use (NRCS, 2011). Soil quality indicators are used to evaluate how well soil functions since soil function often cannot be directly measured. Measuring soil quality is an exercise in identifying soil properties that are responsive to management, affect or correlate with environmental outcomes, and are capable of being precisely measured within certain technical and economic constraints (Doran and Parkin, 1996). Dynamic soil quality is how soil changes depending on how it is managed. Management choices affect the amount of soil organic matter, soil structure, soil depth, and water and nutrient holding capacity (NRCS, 2011).

 

  Statement of the Problem

 

In Africa, three quarter of farmland is severely degraded due to poor soil quality (Eswaran, 1997). Agricultural production in Nigeria is mainly constrained by low levels of soil organic matter, low nutrient status and water holding capacity. Due to the fragile nature of the soils, they degrade rapidly under  continuous  and  intensive  cultivation  (Abu  and  Abubakar  2013).  It  is,  however,  a  known

 

phenomenon that savanna soils in Nigeria have low inherent fertility status, low organic matter, low total nitrogen and phosphorus, low water infiltration capacity, poor internal drainage due to poor structure (Lombin et al., 1991). As a result of the low fertility level in the soil, farmers apply fertilizer to make up for the deficient nutrient. Recent studies have shown that biologically fixed-N from cowpea or soybean is not enough to meet all the N demand of subsequent maize crop. Supplementary fertilizer N is necessary for optimum maize yield under crop rotation, though the quantity required is lower than that under continuous maize cultivation (Yusuf et al., 2009). However, these fertilizers are not applied at recommended rates. Hence, crop productivity declines gradually due to poor soil quality. 

EFFECT OF LONG TERM ROTATION, NITROGEN FERTILIZER AND TILLAGE ON SOIL QUALITY AND MAIZE YIELD IN THE NORTHERN GUINEA SAVANNA OF NIGERIA

Additional Information

  • The Project Material is available for download.
  • The Research material is delivered within 15-30 Minutes.
  • The Material is complete from Preliminary Pages to References.
  • Well Researched and Approved for supervision.
  • Click the download button below to get the complete project material.

Frequently Asked Questions

In-order to give you the best service available online, we have compiled frequently asked questions (FAQ) from our clients so as to answer them and make your visit much more interesting.

We are proudly Nigerians, and we are well aware of fraudulent activities that has been ongoing in the internet. To make it well known to our customers, we are geniune and duely registered with the Corporate Affairs Commission of the republic of Nigeria. Remember, Fraudulent sites can NEVER post bank accounts or contact address which contains personal information. Free chapter One is always given on the site to prove to you that we have the material. If you are unable to view the free chapter 1 send an email to info@allprojectmaterials.com with the subject head "FREE CHAPTER 1' plus the topic. You will get a free chapter 1 within an hour. You can also check out what our happy clients have to say.


Students are always advised to use our materials as guide. However, if you have a different case study, you may need to consult one of our professional writers to help you with that. Depending on similarity of the organization/industry you may modify if you wish.


We have professional writers in various disciplines. If you have a fresh topic, just click Hire a Writer or click here to fill the form and one of our writers will contact you shortly.


Yes it is a complete research project. We ensure that our client receives complete project materials which includes chapters 1-5, full references, questionnaires/secondary data, etc.


Depending on how fast your request is acknowledged by us, you will get the complete project material withing 15-30 minutes. However, on a very good day you can still get it within 5 minutes!

What Clients Say

Our Researchers are happy, see what they are saying. Share your own experience with the world.
Be polite and honest, as we seek to expand our business and reach more people. Thank you.

A Research proposal for effect of long term rotation, nitrogen fertilizer and tillage on soil quality and maize yield in the northern guinea savanna of nigeria:
Reviews: A Review on effect of long term rotation, nitrogen fertilizer and tillage on soil quality and maize yield in the northern guinea savanna of nigeria, effect, long, term project topics, researchcub.info, project topic, list of project topics, research project topics, journals, books, Academic writer.
Long-term field experiments are expected to provide important information regarding soil properties as affected by cropping system and soil management practices. Legumes such as cowpea and soybean add both organic matter and nitrogen (N) to the soil (Omay et al., 1997; Sainju et al., 2003) and increase soil fertility. Maize is the second most essential cereal crop after sorghum in sub-Saharan Africa; it is grown much more intensively than it was estimated since 1985 (FAO, 1999). In Nigeria, maize yield averages about 1.4 tons per hectare and this is only about 20% of the average in Canada and other parts of the world where intensive cereal production is carried out (Afolami and Fawole, 1991; FAO, 1999). Studies have shown that legume-cereal rotation produce relatively higher grain yields than either crop grown alone (Rao and Mathuva, 2000; Olufemi et al., 2001; Mpairwe et al., 2002; Dapaah et al., 2003). Rotating maize with grain legumes is often targeted towards utilizing biologically fixed-nitrogen by legumes for the benefit of the maize (Yusuf et al., 2009). Nitrogen fertilizers are most effectively used as part of a balanced fertilization plan that aims to maximize economic return of a cereal–legume rotation system; Nitrogen fertilizer, apart from increasing the content of nitrate in soil that leads to its leaching (Porter et al., 1996), results in changes in soil pH and many other soil properties (Brady and Weil, 2002). Long-term field experiments with N fertilization ca.. agricultural extension project topics

EFFECT OF LONG TERM ROTATION, NITROGEN FERTILIZER AND TILLAGE ON SOIL QUALITY AND MAIZE YIELD IN THE NORTHERN GUINEA SAVANNA OF NIGERIA

Project Information

  • CATEGORY : AGRICULTURAL EXTENSION
  • TYPE : PROJECT MATERIAL
  • FORMAT : MICROSOFT WORD
  • ATTRIBUTE : Documentation Only
  • PAGES : 60 Pages
  • CHAPTERS : 1 - 5
  • PRICE : ₦ 3,000.00

Share Links

Download Post
Download Post

Search for Project Topics

Project topics in Departments

Do you need a writer for your academic work?