IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES

IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES


1,830 marked this research material reliable.
Call or whatsapp: +2347063298784 or email: info@allprojectmaterials.com
Department: petroleum engineering project topics | Type: Project topics and materials | Format: Ms Word, PDF | Attribute: Documentation Only | Pages: 50 Pages | Chapters: 1-5 chapters

IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES

PROJECT TOPICS AND MATERIALS ON IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES


ABSTRACT

This research work mainly investigates the implication of void prediction in the estimation of total pressure gradient in vertical pipes for multiphase flow systems. Experimental data was collected for a multiphase flow system with silicone oil and air as the liquid and gas phases. The void fraction prediction was carried out using Microsoft Excel. Ten correlations were used for void estimation in chronological order to include statistical analysis of correlation performance. Nicklin et al. (1962) drift flux correlation gives the best void fraction for bubble flow. The prediction from this correlation shows a fairly constant average absolute error of about 20.98% for low gas rate flow (bubble). Greskovich and Cooper (1975) give the best prediction for void fraction in slug flow regime with about 4.84% average absolute error in void fraction prediction. Hassan and Kabir (1989), show progressively higher accuracy and stability in the direction of increasing gas rate with an average absolute error of 6.99% in the churn flow regime. Hence a good correlation for transitional flow region.

Pressure gradient prediction was carried out using two separate approaches: the Homogeneous model and the Duns and Ros model (1963).The statistical parameters used in this study are percentage absolute average error, average absolute and relative error. The parameters calculated were compared to determine the performance of the different correlations evaluated. The realization of this work was used to develop a quality assurance flow scheme for vertical sections.



CHAPTER ONE

INTRODUCTION

1.1      Background

Any fluid flow with more than one phase or flow species is termed ‘multiphase flow’. Most real life flow streams are multiphase. Common examples are hydrocarbon movement either from the reservoir to the wellbore or in transportation lines, blood flow streams in living organisms, nuclear fluids in nuclear reactors, etc. Multiphase systems may be two-phase, three-phase or more in no particular combination of the states of matter (i.e. liquid-liquid such as in oil droplets in water, solid-liquid such as in suspensions or gas-liquid-water found in common hydrocarbon traps).

Multiphase flow is characterized by the simultaneous flow of the components of the flow stream. Therefore the parameter to be accounted for in any multiphase system design includes, the volumetric flow rate (total and phase) [m3/s] , the mass flow rate [kg/s], the mass flux [kg/m2], phase fraction, distribution term, flow velocities [m/s], slip values, drift factor and variations of fluid properties as a result of changes in flow stream (flow patterns).

The summation of the volumetric fraction of all the species in any multiphase stream is unity and each phase moves with a superficial velocity as a result of interference by the other phase(s). The mixture velocity is obtained as the algebraic sum of the superficial velocities of all the species.

A common subject of interest by investigators in the field of multiphase streams are the flow regimes: prediction, identification, and marching, liquid holdup (or void fraction), convective heat transfers (due to mixing effects), pressure drop prediction and estimation, waxing and hydrate formation. One of the most challenging factors in a multiphase investigation or monitoring is the high tendency for flow stream modifications (i.e. changes in flow regimes), this is because each of the flow patterns has its unique impact on the flow parameters. The flow pattern is also very sensitivity to flow line orientation. Another important factor that affects the flow regime is the fluid characteristics of the two phases. Most works in literature are reported for air-water flow map, kerosene-air flow map, air-glycerin, and air-oil flow map.

1.1.1     Bubble flow

This type of flow pattern is characterized by a small free-gas phase with the pipe almost completely filled with the liquid phase. Hence a liquid dominated flow. The gas phase is randomly distributed as small bubbles with varying diameters. The individual gas bubble moves with unique velocities as a function of its diameter8. In a riser, the liquid moves up the pipe at a fairly uniform velocity and, except for its density, the gas phase has little effect on the pressure-gradient.

DOWNLOAD COMPLETE WORK FOR IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES


Additional Information

  • The Project Material is available for download.
  • The Research material is delivered within 15-30 Minutes.
  • The Material is complete from Preliminary Pages to References.
  • Well Researched and Approved for supervision.
  • Click the download button below to get the complete project material.

Frequently Asked Questions

In-order to give you the best service available online, we have compiled frequently asked questions (FAQ) from our clients so as to answer them and make your visit much more interesting.

We are proudly Nigerians, and we are well aware of fraudulent activities that has been ongoing in the internet. To make it well known to our customers, we are geniune and duely registered with the Corporate Affairs Commission of the republic of Nigeria. Remember, Fraudulent sites can NEVER post bank accounts or contact address which contains personal information. Free chapter One is always given on the site to prove to you that we have the material. If you are unable to view the free chapter 1 send an email to info@researchcub.info with the subject head "FREE CHAPTER 1' plus the topic. You will get a free chapter 1 within an hour. You can also check out what our happy clients have to say.


Students are always advised to use our materials as guide. However, if you have a different case study, you may need to consult one of our professional writers to help you with that. Depending on similarity of the organization/industry you may modify if you wish.


We have professional writers in various disciplines. If you have a fresh topic, just click Hire a Writer or click here to fill the form and one of our writers will contact you shortly.


Yes it is a complete research project. We ensure that our client receives complete project materials which includes chapters 1-5, full references, questionnaires/secondary data, etc.


Depending on how fast your request is acknowledged by us, you will get the complete project material withing 15-30 minutes. However, on a very good day you can still get it within 5 minutes!

What Clients Say

Our Researchers are happy, see what they are saying. Share your own experience with the world.
Be polite and honest, as we seek to expand our business and reach more people. Thank you.

A Research proposal for implication of void prediction in the determination of pressure gradient in vertical pipes:
Reviews: A Review on implication of void prediction in the determination of pressure gradient in vertical pipes, implication, void, prediction project topics, researchcub.info, project topic, list of project topics, research project topics, journals, books, Academic writer.
This research work mainly investigates the implication of void prediction in the estimation of total pressure gradient in vertical pipes for multiphase flow systems. Experimental data was collected for a multiphase flow system with silicone oil and air as the liquid and gas phases. The void fraction prediction was carried out using Microsoft Excel. Ten correlations were used for void estimation in chronological order to include statistical analysis of correlation performance. Nicklin et al. (1962) drift flux correlation gives the best void fraction for bubble flow. The prediction from this correlation shows a fairly constant average absolute error of about 20.98% for low gas rate flow (bubble). Greskovich and Cooper (1975) give the best prediction for void fraction in slug flow regime with about 4.84% average absolute error in void fraction prediction. Hassan and Kabir (1989), show progressively higher accuracy and stability in the direction of increasing gas rate with an average absolute error of 6.99% in the churn flow regime. Hence a good correlation for transitional flow region... petroleum engineering project topics

IMPLICATION OF VOID PREDICTION IN THE DETERMINATION OF PRESSURE GRADIENT IN VERTICAL PIPES

Project Information

Share Links

Download Post (MsWord)
Download Post (PDF)

Search for Project Topics

Project topics in Departments

Do you need a writer for your academic work?