ANALYSIS OF VOID FRACTION PHASE DISTRIBUTION OF GAS-LIQUID FLOW IN A HORIZONTAL PIPE USING WIRE MESH SENSOR DATA


ANALYSIS OF VOID FRACTION PHASE DISTRIBUTION OF GAS-LIQUID FLOW IN A HORIZONTAL PIPE USING WIRE MESH SENSOR DATA

Type: Project Materials | Format: Ms Word | Attribute: Documentation Only | Pages: 50 Pages | Chapters: 1-5 chapters | Price: ₦ 3,000.00

1,569 marked this research material reliable.
Call or whatsapp: +2347063298784 or email: info@allprojectmaterials.com
Excellent and professional research project topics and materials website. All the research tools, journals, seminars, essays, article, books, term papers, softwares and project materials for your research guide and final year projects are available here.

ABSTRACT

The scope of this work was to make detailed analysis of phase distribution in a horizontal pipe. This detailed analysis has been successfully carried out. Data obtained from wire mesh sensor (WMS) were used for the analyses. The operating fluid considered was an air/silicone oil mixture within a 6 m horizontal pipe with internal diameter of 0.067 m. The gas superficial velocities considered spans from 0.047 to 4.727 m/s, whilst liquid superficial velocities ranged from 0.047 to 0.4727 m/s. The wire mesh sensor (WMS) data obtained consist of the average cross-sectional and time average radial void fraction sensor with an acquisition frequency of 1000 Hz over an interval of 60 s. For the range of flow conditions studied, the average void fraction was observed to vary between 0.38 and 0.85. An analysis of the results shows that the major flow patterns observed in this study were found to be in slug and smooth stratified flow regime with the slug flow been the dominant one. At constant liquid superficial velocity, the void fraction increases with an increase in the gas superficial velocity. This observed trend in the horizontal void fraction is consistent with the observations made by (Abdulkadir et al., 2014) and (Abdulkadir et al., 2010) which were all in the vertical orientation. The performance of the void fraction correlations and their accuracies were judged in terms of percentage error and RMS error. Nicklin et al. (1962), Hassan (1995) and Kokal and Stanislav (1989) were judged as the best performing correlations and Greskovich and Cooper (1975) as the least. A cubic profile which was dependent on the gas superficial velocity was observed as the radial void fraction increases with gas superficial velocity. It was also observed that for a given liquid superficial velocity, the frictional pressure drop increases with increase in both gas and mixture superficial velocities. Another finding made was that, even though Wu et al. (2001)’s model was proposed for vertical orientation with air and water used as the operating fluid, it could as well replicate the observed radial void fraction in the horizontal orientation. The experimental frequency was seen to increase with liquid superficial velocity but followed a sinusoidal trend with increase in gas superficial velocity.

CHAPTER 1

INTRODUCTION

1.1        Problem Definition

In this world system you would realize that as human as we are, we are not complex to understand as single units. For example, let us take the male species, you would realize that he is kind of burden free when he is single but as soon as he marries then he brings a burden of the wife and the children if he has one on himself, in the sense that he now has a lot of responsibilities relative to the time he was single. These increases in responsibilities are not peculiar to the man alone but also to the woman as well. There are therefore a lot of problems that arise as a result of the union between the man and the woman. If today they are not figurehting and threatening to divorce each other, tomorrow they may be quarrelling and insulting each other as to why they made such a wrong choice. Today, marriage has become like a besieged city, all those in it want to come out and all those who are out want to go in. It is amazing, isn’t it?

These complex phenomenon that exist between a man and a woman co-existing in a marriage is the same complex phenomenon that can be observed from oil and gas which is transported together in a single pipe. Initially when an oil well is been produced, at a pressure at or above the bubble point pressure only oil is been produced which can be likened to a bachelor who is burden free but immediately the well is produced below bubble point pressure, gas begin to come out of solution, hence multiphase phenomenon and therefore the need to transport both oil and gas through the pipes.

The onshore and offshore production and transportation of oil and gas resources has always been a challenge within the energy industry, with engineers having to deal with the various technical and environmental challenges associated with multiphase flows. For example, in an offshore environment, it is economically preferable to transport gas and liquid mixtures through a single flow line and separate them onshore (Abdulkadir et al., 2010). However, two-phase flow is an extremely complicated physical phenomenon occurring particularly in the petroleum industry during the production and the transportation of oil and gas due to its unsteady nature and high attendant pressure drop. This may eventually damage the pipe system, therefore the complexity of the potential flow regimes present within these pipelines has attracted considerable research interest to improve our understanding of two-phase flow phase distribution in a pipe system under various processing conditions. The spatial distribution of the phases inside the pipe and the pipe geometry play an extremely important role in the accurate determination of pressure gradient and flow hydrodynamic characteristics. The flow patterns and the void fraction are one of the key parameters in two phase flow. The two phase flow in vertical pipes is symmetrical about the pipe axis and is governed by the interaction between the liquid inertia, buoyancy, gravity and surface tension forces. However flow patterns and the void fraction in horizontal pipes is governed by the density segregation (Bhagwat and Ghajar, 2012).

A vital characteristic of two-phase flow is the presence of moving interfaces and the turbulent nature of the flow that make theoretical predictions of flow parameters greatly more difficult than in single-phase flow. Thus, experimental measurements play an important role in providing information for design, and supporting analysis of system behavior. Because of this, there is a real need to make certain measurements of void fraction distribution for model development and testing.

ANALYSIS OF VOID FRACTION PHASE DISTRIBUTION OF GAS-LIQUID FLOW IN A HORIZONTAL PIPE USING WIRE MESH SENSOR DATA

Additional Information

  • The Project Material is available for download.
  • The Research material is delivered within 15-30 Minutes.
  • The Material is complete from Preliminary Pages to References.
  • Well Researched and Approved for supervision.
  • Click the download button below to get the complete project material.

Frequently Asked Questions

In-order to give you the best service available online, we have compiled frequently asked questions (FAQ) from our clients so as to answer them and make your visit much more interesting.

We are proudly Nigerians, and we are well aware of fraudulent activities that has been ongoing in the internet. To make it well known to our customers, we are geniune and duely registered with the Corporate Affairs Commission of the republic of Nigeria. Remember, Fraudulent sites can NEVER post bank accounts or contact address which contains personal information. Free chapter One is always given on the site to prove to you that we have the material. If you are unable to view the free chapter 1 send an email to info@allprojectmaterials.com with the subject head "FREE CHAPTER 1' plus the topic. You will get a free chapter 1 within an hour. You can also check out what our happy clients have to say.


Students are always advised to use our materials as guide. However, if you have a different case study, you may need to consult one of our professional writers to help you with that. Depending on similarity of the organization/industry you may modify if you wish.


We have professional writers in various disciplines. If you have a fresh topic, just click Hire a Writer or click here to fill the form and one of our writers will contact you shortly.


Yes it is a complete research project. We ensure that our client receives complete project materials which includes chapters 1-5, full references, questionnaires/secondary data, etc.


Depending on how fast your request is acknowledged by us, you will get the complete project material withing 15-30 minutes. However, on a very good day you can still get it within 5 minutes!

What Clients Say

Our Researchers are happy, see what they are saying. Share your own experience with the world.
Be polite and honest, as we seek to expand our business and reach more people. Thank you.

Project Information

  • CATEGORY : PETROLEUM ENGINEERING
  • TYPE : PROJECT MATERIAL
  • FORMAT : MICROSOFT WORD
  • ATTRIBUTE : Documentation Only
  • PAGES : 50 Pages
  • CHAPTERS : 1 - 5
  • PRICE : ₦ 3,000.00

Share Links

Download Post
Download Post

Search for Project Topics

Project topics in Departments

Do you need a writer for your academic work?

Reviews:
A Review on analysis of void fraction phase distribution of gas-liquid flow in a horizontal pipe using wire mesh sensor data, analysis, void, fraction project topics, researchcub.info, project topic, list of project topics, research project topics, journals, books, Academic writer.
The scope of this work was to make detailed analysis of phase distribution in a horizontal pipe. This detailed analysis has been successfully carried out. Data obtained from wire mesh sensor (WMS) were used for the analyses. The operating fluid considered was an air/silicone oil mixture within a 6 m horizontal pipe with internal diameter of 0.067 m. The gas superficial velocities considered spans from 0.047 to 4.727 m/s, whilst liquid superficial velocities ranged from 0.047 to 0.4727 m/s. The wire mesh sensor (WMS) data obtained consist of the average cross-sectional and time average radial void fraction sensor with an acquisition frequency of 1000 Hz over an interval of 60 s. For the range of flow conditions studied, the average void fraction was observed to vary between 0.38 and 0.85. An analysis of the results shows that the major flow patterns observed in this study were found to be in slug and smooth stratified flow regime with the slug flow been the dominant one... petroleum engineering project topics

ANALYSIS OF VOID FRACTION PHASE DISTRIBUTION OF GAS-LIQUID FLOW IN A HORIZONTAL PIPE USING WIRE MESH SENSOR DATA